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From (7) it is seen that (8) and (9) can be written in the 
conventional form (Murnaghan, 1951; Nye, 1957): 

E =½(~+~-) 

n =½(~+~ T +U~). 

Finally, expressing lj in these equations by (4), it can be 
shown that (Schlenker, Gibbs & Boisen, 1978; Catti, 1985) 

= ½(O'-lO + OrO '-It) - I  

~1 = ½(OrO'-l  r O ' - l O  -- I) • 

Concluding remarks 

We can express all these matrix relations in the following 
tensor diagram which illustrates the one-to-one correspon- 
dence between the tensors gS, D and d in the crystallo- 
graphic reference frame and the tensors ~j, -q and e in the 
Cartesian reference frame: 

o 
(d, D) . . . . . . .  "* (~, n) 

4, 4, 
s s 

gS . . . . . . .  -~ 
o 

where O and S denote orthogonalization and symmetriz- 
ation operations. 

Therefore, mathematically we can visualize the 
homogeneous lattice deformation as a transformation of 
the basis vectors in the crystallographic reference frame or 
as a transformation of the atomic coordinates in the Car- 
tesian reference frame. 

We thank Dr M. Catti from the University of Milano, 
Italy, for helpful discussions on some of the questions 
concerning the present subject. 
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Abstract 

In protein crystallographic studies, the mean-square error 
at each point in the electron-density ffinction is given, in 
space group P1, by 

crZ(x)=(1/V 2) ~, F2o[1-m(h) 2] 
all h 

+ ( 1 / V  2) Y~ F2{m2(h) exp[ia2(h)] 
all h 

- m(h) 2 exp [2iaB(h)]} exp ( -4zr ih .  x). 

Here, Fo is the observed structure-factor amplitude; 
re(h) exp [/an(h)] = j" P[a (h) ]  exp (ia) da is the weighted 
phase factor in the 'best' Fourier coefficient of Blow & 
Crick; m2(h) exp (ia2) =j" P[a(h) ]  exp (2ia) da  is similar 
to a traditional second moment. P[a(h)]  da  is the probabil- 
ity that the phase angle for a given reflection has value 
between a and a +da .  

Introduction 

It is common practice in protein crystallography to make 
estimates of the error in each structure factor F(h). The 
most commonly used error models lead to an estimate of 
P[a (h)], the probability density function for the phase a (h) 
(Blow & Crick, 1959; Hendrickson & Lattman, 1970). Errors 
in the structure-factor amplitudes are generally ignored. 
P(a) is of great importance in developing correct weights 
for the structure factors in Fourier syntheses. For example, 
the commonly used 'best' Fourier coefficient of Blow & 
Crick (1959) uses the centroid-weighted phase factor given 
in (7). 

Little attention has been paid to the corresponding errors 
in the electron-density function p(x). Yet there are many 
operations, such as solvent flattening and molecular 
averaging, in which appropriate weighting could be very 
important. An objective measure of the local quality of the 
electron-density map might help to distinguish structural 
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disorder from poor density. To accomplish this, appropriate 
errors must be associated with each point in the electron- 
density function. Here we obtain the function o'2(x), the 
variance of the electron density at point x, given Fo and 
P ( a )  for each reflection. 

Methods 

Space group P1 

Let FT = FT exp (iaT) be the true or correct structure 
factor, which we do not know. Let Fn = mFo exp (ian) be 
the structure factor for the best Fourier synthesis of Blow 
& Crick (Blundell & Johnson, 1976). The difference density 
between the best and true structures is 

A p = ( 1 / V )  ~ , ( F T - F n ) e x p ( - 2 7 r i h . x ) .  (1) 
h 

The square of Ap, the quantity we wish to estimate, is given 
by 

A p 2 = ( 1 / V  2) ~, (FT-- Fn) exp (-27rih.  x) e 
h 

× Y, (FT-- Fn) exp ( -27r i k .  x). (2) 
k 

Collecting Friedel mates, since these are not independent 
observations, one finds that 

Ap 2 = (1 /V 2) / ~ (FT-Fn)  exp (-27rih.  X)  

L 1/2 
sphere  

+ (F* - F*) exp (27rih. x) } 

x / 5-', (FT-- Fn) exp (-27rik.  X)  
/ 1/2 

sphere  

+ (F* - F*) exp (27rik. x)}.  (3) 

Consider initially terms in the product of the two summa- 
tions for which h = k. The general term of this type is 

(F T-  FB) 2 exp ( -4zr ih .  x) + (F* - F'B) 2 exp (4wih. x) 

+ 2(FT-- Fn) (F* - F*). 

We make the usual approximation that IFTI = Fo, thus 
assuming that all error is in the phases. The general term 
for h = k then reduces to 

F2{[exp ( iaT) -- m exp (icon)] 2 exp ( -4zr ih .  x) 

+ [exp (--iaT) -- m exp ( - i a n ) ]  2 exp (4wih. x) 

+2[exp ( iar)  - m exp (iaB)] 

x [exp ( - - i a T ) - - m  exp ( - ian)]} .  (4) 

Since we do not know a r  we follow the procedure of Blow 
& Crick, and compute expectation values for each reflection 
using P(o~), which is assumed to be normalized. Consider 
the first term within the curly brackets in (4). Expanding 
the square yields 

{exp ( 2 i a r ) - 2 m  exp (ia~) exp ( iaT)+ m 2 exp (2ian)} 

x exp ( -4zr ih .  x). (5) 

We compute the expectation value of exp (2 iar )  using 

2w 

S P ( a )  exp (2ia) da  -= m2 exp (ia2), (6) 
0 

and of exp ( i a r )  by the definition 

2~r 

J P ( a )  exp ( ia)  da  =- m exp (ian). (7) 
0 

Thus the first term in the curly brackets in (4) becomes 

F2o{m2 exp (ia2) - m 2 exp (2ias)} exp ( -4wih .  x). (8) 

The second term is the complex conjugate of this. The third 
is 

2]FT- FB[ 2 = 2F2o{eXp ( iar )  - m exp (ia a)} 

x {exp (--iaT) - m exp ( - /an)}  

=2F2o(1 - m2). (9) 

The last step makes use of the expectation value of exp (Jar)  
in (7). Thus - still ignoring terms for which h ~ k - we can 
write the final form of (2) for the error in the electron-density 
function. We have introduced o'2(x) as the function name 
because it now represents the expected value of the squared 
error at each point, rather than the actual value, which is 
unknown. 

crZ(x)=(1 /V2)  E FZo[1-m(h)  2] 
all h 

+(1/V2)  2 FZ{m2(h) e x p [ i a z ( h ) ] - m ( h )  z 
all h 

x exp [2iaB(h)]} exp ( - 4 h .  x). (10) 

Friedel's law has been used to restore the summation limits 
to a full sphere. The first term in (10) represents the familiar 
equation for the root-mean-square error in the electron 
density, averaged over the entire unit cell (Blundell & 
Johnson, 1976). It enters as the constant term in our series, 
and its appearance is a comforting suggestion that the 
calculation is on the right track. The second term in (10) 
is a Fourier synthesis in which the indices have been 
doubled, effectively halving the unit cell. One can rational- 
ize this superficially counter-intuitive result by realizing that 
the error contributed by a single Fourier component does 
not depend on its sign, since the squared error is being 
calculated. Thus grid points that are separated by multiples 
of a half cycle of the component receive equal error contri- 
butions. The phase factor [m 2 exp ( i a2 ) -  m 2 exp (2ian)] 
contains the difference between the second moment of a 
distribution, and the square of its first moment - a familiar 
feature of statistical error or fluctuational analyses. 

Terms for  which h ~ k. It is easy to show that terms in 
(3) for which h # k make no contribution to tr(x) 2. A typical 
term is given by 

{FT(h) exp [iaT(h)] - m(h)Fo(h)  exp [/an(h)]} 

x {Fr(k) exp [Jar(k)] - m(k )Fo(k )  exp [/an(k)]} 

x exp [ -27r i (h+ k) .  x]. (11) 

The approximation that Fr  = Fo allows (11) to be simplified 
to 

FoF'o{[exp ( i a r ) - m  exp (/as)]  

x [exp (ia'r) - m'  exp (ia~)]} 

x exp [ - 2 w i ( h +  k) .  x]. (12) 
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Expanding the square and replacing exp( iar)  and 
exp (ia'r) by their expectation values, as in (5), one gets 

FoF' o mm'{exp [ i( a B + a~)] - exp [ i( aB + a~)] 

-exp[ i (as+a'B)]+exp[ i (aa+a'a)]}=O.  (13) 

Terms involving complex conjugates give the same result. 
Thus, (10) represents the final expression for tr2(x) in space 
group P1. 

Other space groups 
One can calculate trE(x) for other space groups by a 

procedure similar to that used above. The main difference 
is that in (3), where Friedel mates are collected for space 
group P1, all symmetry mates have to be collected within 
the brackets, since they constitute the set of non-indepen- 
dent observations. A program that takes specific account 
of the space group is thus required. As a simple example, 
consider the space group P2. To make the notation more 
compact we introduce 

Wh,x = exp (21rih. x), AF= FT-Fn ,  

h' = symmetry mate of h = ( -h ,  k, - l ) .  

A F.  W _ h ,  x dl- Z~ F*. Wh,  x Ap 2 = (1 /V 2) h~/4-, 

sphere 

+ AF' .  W-h' x + AF'*.  Wh, x / 

x ( 1 / V 2 ) {  ~ AF.W_k,~+AF*.Wk,~ 
k /4  
sphere 

+ AF' .  W_k, ,x  "[- AF'*. Wk, x } . (14) 

As before, consider only terms for which k = h. The general 
term is 

A F 2 . W_2h,  x "+- ,~ F .2 . W2h, x "~- A F '2 . W_zh,,x + A F '*z . W2h, x 

+ 21AFI = + 2 la  F'I 2 + 2AF. a F'W-h-h',x 

+ 2A F.  a V'*W_h+h,,x q- 2A F*. a F'Wh_h,,x 

+2AF*.  A F ' * W h + h , , x .  ( 1 5 )  

The first six terms represent twin sets of terms just like 
those in the P1 equation - one for each asymmetric unit. 
The remainder involves cross terms between the 
asymmetric units. Symmetry operations do not change 
the phase in P2. Setting Fo = IFTI as before, and using (6) 

and (7), we have 

0"2(x) = (1 /V 2) Y. F2[ 1 - m(h) 2] 
all h 

+ ( 1 / V  2) ~ F2o{m2(h) exp[ia2(h)] 
all h 

- re(h) 2 exp [2ia~(h)]} exp ( -47rh.  x) 

+(1/V2)  2 F2o{m2(h)exp[ia2(h)] 
all h 

- m(h) z exp [2iaB(h)]} exp [ -2or (h+ h ') .  x] 

+ ( 1 / V  2) Y~ FZo{m2(h) exp[iaz(h)] 
all h 

- m(h) 2 exp [2iaB(h)]} exp [ - 2 7 r ( h - h ' ) .  x]. (16) 

Crystal and Friedel symmetries have been used to re-expand 
the summation limits to a full sphere. For high-symmetry 
space groups the formula for 0"2(x) will clearly contain 
many terms. However, the calculation is easily compressed 
and fully tractable. 

Discussion 

As yet little direct experience has been gained with the error 
function. However, a number of uses come readily to mind. 
High- and low-quality regions of electron-density maps may 
be distinguishable, giving guidance about chain tracing 
through difficult regions. In the case of non-crystallographic 
averaging, the factor 1/tr2(x) provides the correct weight 
for each point in the average. Hitherto, unit weights have 
been used. For a set of points related by non-crystallo- 
graphic symmetry, substantial disagreement between the 
cr2(x) values and the actual variance of the average could 
serve as a warning about a possibly misplaced symmetry 
operator. More speculatively, combining the Fourier trans- 
forms of the modified density and the concomitantly 
modified tr2(x) could allow one to phase the probability 
density function used in generating the coefficients for the 
map in the next cycle. 

This work was supported by NIH grant GM-36358. 
Robert Diamond has independently derived results essen- 
tially identical to those herein. 
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Abstract 

The real and imaginary parts of the forward X-ray scattering 
factor of metallic aluminium are reported for photon 
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energies from 10 to 10 4 eV. The imaginary part of the 
scattering factor f2(w) was derived from the absorption 
database of Shiles, Sasaki, Inokuti & Smith [Phys. Rev. B 
(1980). 22, 1612-1628] with the addition of solid-state struc- 
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